学术交流

【学术报告】2020年11月17日晚上李常品教授来我实验室举办学术讲座

发布时间:2020-11-13   


报告人:李常品 (上海大学  教授)

报告人简介: 李常品,上海大学理学院数学系教授、博士生导师。主要研究方向为分数阶偏微分方程数值解、分岔混沌的应用理论和计算。在SIAMChapman and Hall/CRC出版专著各1部,在World Scientific编辑专著1部;发表SCI论文近140篇。主持国家自然科学基金、教育部留学回国人员科研启动基金、上海市教委科研创新重点项目等10余项。是德国德古意特出版社系列丛书《Fractional Calculus in Applied Sciences and Engineering》的创始主编,是《Appl. Numer. Math.》、 《 Fract. Calc. Appl. Anal.》、 《J. Nonlinear Sci.》、 《上海大学学报(自然科学版)》等杂志编委。2017年和2010年两次获上海市自然科学奖、2016年入选上海市优秀博士学位论文指导教师、2012年获分数阶微积分领域的黎曼--刘维尔理论文章奖、2011年获宝钢优秀教师奖。


报告题目Non-uniform L1/LDG method for the Caputo-Hadamard fractional partial differential equation


报告摘要In this talk, we introduce the CaputoHadamard fractional partial differential equation where the time derivative is the CaputoHadamard fractional one and the space derivative is the integer-order one. We first present a modified Laplace transform. Then using the newly defined Laplace transform and the well-known finite Fourier sine transform, we obtain the analytical solution to this kind of linear equation. Furthermore, we study the regularity and logarithmic decay of its solution. Since the equation has a time fractional derivative, its solution behaves a certain weak regularity at the initial time. We use the finite difference scheme on non-uniform meshes to approximate the time fractional derivative in order to guarantee the accuracy, and use the local discontinuous Galerkin method (LDG) to approximate the special derivative. The fully discrete scheme is established and analyzed. A numerical example is displayed which support the theoretical analysis.


报告时间: 2020111719:00-21:00


报告地点: 腾讯会议室:ID 434 672 1949




版权所有 © 2017 37000cm威尼斯