学术交流

【学术报告】2020年11月16日晚上洪佳林教授来我实验室举办学术讲座(二)

发布时间:2020-11-13   

报告人:洪佳林 (中国科学院数学与系统科学研究所 研究员)

报告人简介: 洪佳林,研究员、博士生导师、中国科学院数学与系统科学研究院副院长。1994年在吉林大学获得博士学位,1995年至1996年在应用数学研究所作博士后,199611月在计算数学与科学工程计算研究所任副研究员,19973月至19993月受西班牙科学教育部资助在西班牙Valladolid大学做研究工作,19991月至今,历任数学与系统科学研究院副研究员、研究员、博士生导师。其主要研究方向为动力系统保结构算法理论与应用,包括确定与随机哈密尔顿系统辛几何算法、确定与随机哈密尔顿偏微分方程多辛几何算法、李群算法以及确定与随机微分系统的守恒型算法等。主持完成国家基金委重大项目课题、重大研究计划重点项目等多个研究项目。在“J. Comput. Phys.”、“J. Diff. Equ.”、“Math. Comput.”、 “Numer. Math.”、“SIAM J. Numer. Anal.”、“SIAM J. Sci. Comput.”等国际重要学术刊物上发表研究论文100余篇。


报告题目Solving Nonlinear Schroinger Equation via Stochastic Symplectic Methods


报告摘要This talk gives a review on stochastic symplecticity (multi-symplecticity) and ergodicity of numerical methods for stochastic nonlinear Schroinger (NLS) equation. The equation considered is charge conservative and has the multi-symplectic conservation law. Based on a stochastic version of variational principle, we show that the phase flow of the equation, considered as an evolution equation, preserves the symplectic structure of the phase space. We give some symplectic integrators and multi-symplectic methods for the equation.By constructing control system and invariant control set, it is proved that the symplectic integrator, based on the central difference scheme, possesses a unique invariant measure on the unit sphere. Furthermore, by using the midpoint scheme, we obtain a full discretization which possesses the discrete charge conservation law and the discrete multi-symplectic conservation law. Utilizing the Poisson equation corresponding to the finite dimensional approximation, the convergence error between the temporal average of the full discretization and the ergodic limit of the symplectic method is derived.


报告时间: 2020111621:00-23:00


报告地点: 腾讯会议室:ID 434 672 1949




版权所有 © 2017 37000cm威尼斯