发布时间:2020-10-26
报告人 :王冀鲁(北京计算科学研究中心 研究员)
报告人简介 :
她的主要研究方向为PDE的科学计算和数值分析,尤其是有限元方法的理论分析。她的学术工作发表在SIAM J. Numer. Anal.,Numer. Math.,Math. Comput.等著名计算数学杂志上。
报告题目:Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation
报告摘要:An implicit energy-decaying modified Crank-Nicolson time-stepping method is constructed for the viscous rotating shallow water equation on the plane. Existence, uniqueness and convergence of semidiscrete solutions are proved by using Schaefer's fixed point theorem and $H^2$ estimates of the discretized hyperbolic-parabolic system. For practical computation, the semidiscrete method is further discretized in space, resulting in a fully discrete energy-decaying finite element scheme. A fixed-point iterative method is proposed for solving the nonlinear algebraic system. The numerical results show that the proposed method requires only a few iterations to achieve the desired accuracy, with second-order convergence in time, and preserves energy decay well
报告时间 :2020年10月29日下午15:00-17:00
报告地点 :腾讯会议室:304698414