发布时间:2020-10-26
报告人 :赵晓飞(武汉大学 副教授 )
报告人简介 :
武汉大学37000cm威尼斯副教授,从事计算数学研究。2010年北师大本科毕业,2014年新加坡国立博士毕业,15-18在法国雷恩inria做博后, 19年初加入武大。研究兴趣为色散和动力学类方程的数值离散和误差分析。
报告题目:Numerical integrators for disordered nonlinear Schrodinger Equation
报告摘要:In this talk, we will present the numerical methods for integrating a cubic nonlinear Schrodinger equation with a spatial random potential. The model is known as the continuous disordered NLS. The presence of the random potential induces roughness to the equation and to the solution, which causes convergence order reduction for classical numerical methods. We shall introduce a low-regularity integrator, where we show how to integrate the potential term and the nonlinearity by losing two spatial derivatives. Numerical results will be presented to show the accuracy of LRI compared with classical methods under random/rough potentials from applications.
报告时间 :2020年10月28日下午14:30-16:30
报告地点 :腾讯会议室:383422768